lunes, 11 de mayo de 2009

miércoles, 8 de abril de 2009

DETERMINANTES


MATRICES

MATRICES
Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. SylvesterEl desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853En 1858, A. Cayley introduce la notación matricial como una forma abreviada de escribir un sistema de m ecuaciones lineales con n incógnitas.
Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Además de su utilidad para el estudio de sistemas de ecuaciones lineales, las matrices aparecen de forma natural en geometría, estadística, economía, informática, física, etc...
La utilización de matrices (arrays) constituye actualmente una parte esencial dn los lenguajes de programación, ya que la mayoría de los datos se introducen en los ordenadores como tablas organizadas en filas y columnas : hojas de cálculo, bases de datos,...

CONCEPTO DE MATRIZ
Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, suelen ser números ordenados en filas y columnas.
Se llama matriz de orden "m × n" a un conjunto rectangular de elementos aij dispuestos en m filas y en n columnas. El orden de una matriz también se denomina dimensión o tamaño, siendo m y n números naturales.
Las matrices se denotan con letras mayúsculas: A, B, C, ... y los elementos de las mismas con letras minúsculas y subíndices que indican el lugar ocupado: a, b, c, ... Un elemento genérico que ocupe la fila i y la columna j se escribe aij . Si el elemento genérico aparece entre paréntesis también representa a toda la matriz : A = (aij)

lunes, 23 de marzo de 2009

ecuaciones lineales

INTERPRETACION GEOMETRICA DE LAS SOLUCIONES

En términos geométricos es el estudio de las posiciones relativas de dos planos, casos que se presentan:
■ Planos paralelos. Sin puntos comunes, cuando el sistema sea incompatible.
● Planos que se cortan en una recta. Si el sistema es compatible pero indeterminado, con un grado de libertad.
■ Planos coincidentes. Ocurre este caso cuando las dos ecuaciones son equivalentes y el sistema es compatible indeterminado con dos grados de libertad
B) Sistemas de tres ecuaciones con tres incógnitas:
Cada ecuación representa un plano en el espacio tridimensional. Luego se trata de estudiar la posición relativa de tres planos en el espacio. Las soluciones del sistema son geométricamente los puntos de intersección de los tres planos, los casos son:
▲ Un punto único. Sistema compatible determinado.. Los tres planos se cortan en P.









p
· Una recta. Son soluciones todos los puntos representativos de la recta común. Sistema compatible indeterminado con un grado de libertad.

Los planos se cortan en r.

r





▼ Un plano. Los planos son coincidentes. El sistema es compatible indeterminado con dos grados de libertad.
◄ Ningún punto. El sistema es incompatible. Esta situación se presenta geométricamente de distintas maneras. Para estudiar las posiciones relativas de los planos hay que tomarlos de dos en dos.
Se pueden presentar varios casos: Que los planos sean paralelos:
P1
P2

http://carmesimatematic.webcindario.com/algebra%202bach.htm


Sistema de ecuaciones lineales

En
matemática y álgebra lineal, un sistema de ecuaciones lineales, también conocido como sistema lineal de ecuaciones o simplemente sistema lineal, es un conjunto de ecuaciones lineales sobre un cuerpo o un anillo conmutativo. Un ejemplo de sistema lineal de ecuaciones sería el siguiente:
El
problema consiste en encontrar los valores desconocidos de las variables x1, x2 y x3 que satisfacen las tres ecuaciones.
El problema de los sistemas lineales de ecuaciones es uno de los más antiguos de la matemática y tiene una infinidad de aplicaciones, como en
procesamiento digital de señales, estimación, predicción y más generalmente en programación lineal así como en la aproximación de problemas no lineales de análisis numérico.
En general, un sistema con m ecuaciones lineales n incógnitas puede ser escrito en forma ordinaria como:
Donde son las incógnitas y los números son los coeficientes del sistema sobre el cuerpo . Es posible reescribir el sistema separando con coeficientes con notación matricial:
(
1)
Si representamos cada matriz con una única letra obtenemos:
Donde A es una
matriz m por n, x es un vector columna de longitud n y b es otro vector columna de longitud m. El sistema de eliminación de Gauss-Jordan se aplica a este tipo de sistemas, sea cual sea el cuerpo del que provengan los coeficientes.
[editar] Sistemas lineales reales
En esta sección se analizan las propiedades de los sistemas de ecuaciones lineales sobre el cuerpo , es decir, los sistemas lineales en los coeficientes de las ecuaciones son
números reales.
[editar] Representación gráfica


La intersección de dos planos no paralelos es una recta
Un sistema con incógnitas se puede representar en el n-espacio correspondiente.
En los sistemas con 2 incógnitas, el universo de nuestro sistema será el
plano bidimensional, mientras que cada una de las ecuaciones será representada por una recta, si es lineal, o por una curva, si no lo es. La solución será el punto (o línea) donde intersecten todas las rectas y curvas que representan a las ecuaciones. Si no existe ningún punto en el que intersecten al mismo tiempo todas las líneas, el sistema es incompatible, o lo que es lo mismo, no tiene solución.
En el caso de un sistema con 3 incógnitas, el universo será el espacio tridimensional, siendo cada ecuación un plano dentro del mismo. Si todos los planos intersectan en un único punto, las coordenadas de éste serán la solución al sistema. Si, por el contrario, la intersección de todos ellos es una recta o incluso un plano, el sistema tendrá infinitas soluciones, que serán las coordenadas de los puntos que forman dicha línea o superficie.
Para sistemas de 4 ó más incógnitas, la representación gráfica no es intuitiva para el ser humano, por lo que dichos problemas no suelen enfocarse desde esta óptica.
Tipos de sistemas
Los sistemas de ecuaciones se pueden clasificar según el número de soluciones que pueden presentar. De acuerdo con ese caso se pueden presentar los siguientes casos:
Sistema incompatible si no tiene ninguna solución.
Sistema compatible si tiene alguna solución, en este caso además puede distinguirse entre:
Sistema compatible determinado cuando tiene un número finito de soluciones.
Sistema compatible indeterminado cuando admite un conjunto infinito de soluciones.
Quedando así la clasificación:
Los sistemas incompatibles geométricamente se caracterizan por (hiper)planos o rectas que se cruzan sin cortarse. Los sistemas compatibles determinados se caracterizan por un conjunto de (hiper)planos o rectas que se cortan en un único punto. Los sistemas compatibles indeterminados se caracterizan por (hiper)planos que se cortan a lo largo de una recta [o más generalmente un hiperplano de dimensión menor]. Desde un punto de vista algebraico los sistemas compatibles determinados se caracterizan porque el
determinante de la matriz es diferente de cero:
[editar] Sistemas compatibles indeterminados
Un sistema sobre un cuerpo K es compatible indeterminado cuando posee un número infinito de soluciones. Por ejemplo, el siguiente sistema:
Tanto la primera como la segunda ecuación se corresponden con la recta cuya pendiente es y que pasa por el punto , por lo que ambas intersectan en todos los puntos de dicha recta. El sistema es compatible por haber solución o intersección entre las rectas, pero es indeterminado al ocurrir esto en infinitos puntos.
En este tipo de sistemas, la solución genérica consiste en expresar una o más variables como
función matemática del resto. En los sistemas lineales compatibles indeterminados, al menos una de sus ecuaciones se puede hallar como combinación lineal del resto, es decir, es linealmente dependiente.
Una condición necesaria para que un sistema sea compatible indeterminado es que el determinante de la matriz del sistema sea cero (y por tanto uno de sus
autovalores será 0):
De hecho, de las dos condiciones anteriores se desprende, que el conjunto de soluciones de un sistema compatible indeterminado es un
subespacio vectorial. Y la dimensión de ese espacio vectorial coincidirá con la multiplicidad geométrica del autovalor cero.
[editar] Sistemas incompatibles
De un sistema se dice que es incompatible cuando no presenta ninguna solución. Por ejemplo, supongamos el siguiente sistema:
Las ecuaciones se corresponden gráficamente con dos rectas, ambas con la misma pendiente, Al ser
paralelas, no se cortan en ningún punto, es decir, no existe ningún valor que satisfaga a la vez ambas ecuaciones.
Matemáticamente un sistema de es incompatible cuando el rango de la matriz del sistema es inferior al rango de la matriz ampliada. Una condición necesaria para que esto suceda es que el determinante de la matriz del sistema sea cero:
[editar] Métodos de resolución
[editar] Sustitución
El método de sustitución consiste en despejar en una de las ecuaciones cualquier incógnita, preferiblemente la que tenga menor coeficiente, para, a continuación, sustituirla en otra ecuación por su valor.
En caso de sistemas con más de dos incógnitas, la seleccionada debe ser sustituida por su valor equivalente en todas las ecuaciones excepto en la que la hemos despejado. En ese instante, tendremos un sistema con una ecuación y una incógnita menos que el inicial, en el que podemos seguir aplicando este método reiteradamente. Por ejemplo, supongamos que queremos resolver por sustitución este sistema:
En la primera ecuación, seleccionamos la incógnita por ser la de menor coeficiente y que posiblemente nos facilite más las operaciones, y la despejamos, obteniendo la siguiente ecuación.
El siguiente paso será sustituir cada ocurrencia de la incógnita en la otra ecuación, para así obtener una ecuación donde la única incógnita sea la .
Al resolver la ecuación obtenemos el resultado , y si ahora sustituimos esta incógnita por su valor en alguna de las ecuaciones originales obtendremos , con lo que el sistema queda ya resuelto.
[editar] Igualación
El método de igualación se puede entender como un caso particular del método de sustitución en el que se despeja la misma incógnita en dos ecuaciones y a continuación se igualan entre sí la parte derecha de ambas ecuaciones.
Tomando el mismo sistema utilizado como ejemplo para el método de sustitución, si despejamos la incógnita en ambas ecuaciones nos queda de la siguiente manera:
Como se puede observar, ambas ecuaciones comparten la misma parte izquierda, por lo que podemos afirmar que las partes derechas también son iguales entre sí.
Llegados a este punto, la ecuación resultante es resoluble y podemos obtener el valor de la incógnita , y a partir de aquí, sustituyendo dicho valor en una de las ecuaciones originales, obtener el valor de la , que además ya se encuentra despejada.
[editar] Reducción
Este método suele emplearse mayoritariamente en los sistemas lineales, siendo pocos los casos en que se utiliza para resolver sistemas no lineales. El procedimiento, diseñado para sistemas con dos ecuaciones e incógnitas, consiste en transformar una de las ecuaciones (generalmente, mediante
productos), de manera que obtengamos dos ecuaciones en la que una misma incógnita aparezca con el mismo coeficiente y distinto signo. A continuación, se suman ambas ecuaciones produciéndose así la reducción o cancelación de dicha incógnita, obteniendo así una ecuación con una sola incógnita, donde el método de resolución es simple.
Por ejemplo, en el sistema
no tenemos más que multiplicar la primera ecuación por para poder cancelar la incógnita . Al multiplicar, dicha ecuación nos queda así:
Si sumamos esta ecuación a la segunda del sistema original, obtenemos una nueva ecuación donde la incógnita ha sido reducida y que, en este caso, nos da directamente el valor de la incógnita :
El siguiente paso consiste únicamente en sustituir el valor de la incógnita en cualquiera de las ecuaciones donde aparecían ambas incógnitas, y obtener así que el valor de es igual a .
[editar] Método de Gauss
La
eliminación de Gauss-Jordan, más conocida como método de Gauss, es un método aplicable únicamente a los sistemas lineales de ecuaciones, y consistente en triangular la matriz aumentada del sistema mediante transformaciones elementales, hasta obtener ecuaciones de una sola incógnita, cuyo valor será igual al coeficiente situado en la misma fila de la matriz. Este procedimiento es similar al anterior de reducción, pero ejecutado de manera reiterada y siguiendo un cierto orden algorítmico.
Tomemos como ejemplo el siguiente sistema:
Su matriz aumentada será esta:
En primer lugar, reducimos la incógnita , sumando a la segunda fila, la primera multiplicada por , y a la tercera, la primera fila. La matriz queda así:
El siguiente paso consiste en eliminar la incógnita en la primera y tercera fila, para lo cual les sumamos la segunda multiplicada por y por , respectivamente.
Por último, eliminamos la , tanto de la primera como de la segunda fila, sumándoles la tercera multiplicada por y por , respectivamente.
Llegados a este punto podemos resolver directamente las ecuaciones que se nos plantean:O, si lo preferimos, podemos multiplicar las tres filas de la matriz por , y respectivamente, y obtener así automáticamente los valores de las incógnitas en la última columna.
[editar] Regla de Cramer
Artículo principal:
Regla de Cramer
La regla de Cramer da una solución para sistemas compatibles determinados en términos de determinantes y adjuntos dada por:
Donde Aj es la matriz resultante de remplazar la j-ésima columna de A por el vector columna b. Para un sistema de dos ecuaciones y dos incónitas:
La regla de Cramer da la siguiente solución:
Nota: Cuando en la determinante original det(A) el resultado es 0, el sistema indica múltiples o sin coincidencia.
[editar] Sistemas lineales en un cuerpo arbitrario
Cuando consideramos ecuaciones lineales cuyas soluciones son números racionales, reales o complejos o más generalmente un cuerpo , la solución puede encontrarse mediante
Regla de Cramer. Para sistemas de muchas ecuaciones la regla de Cramer puede ser computacionalmente más costosa y suelen usarse otros métodos más "económicos" en número de operaciones como la eliminación de Gauss-Jordan y la descomposición de Cholesky. Existen también métodos indirectos (basados en iteraciones) como el método de Gauss-Seidel.
Si el cuerpo es
infinito (como es el caso de los números reales o complejos), entonces solo puede darse una de las tres siguientes situaciones:
el sistema no tiene solución (en dicho caso decimos que el sistema está sobredeterminado o que es incompatible)
el sistema tiene una única solución (el sistema es compatible determinado)
el sistema tiene un número infinito de soluciones (el sistema es compatible indeterminado).
Un sistema de la forma
Ax = 0
se le llama sistema homogéneo. El conjunto de todas las soluciones de este tipo de sistema se le llama
núcleo de la matriz y se escribe como Nuc A.
Se han diseñado algoritmos alternativos mucho más eficientes a la
eliminación de Gauss-Jordan para una gran cantidad de casos específicos. La mayoría de estos algoritmos mejorados tienen una complejidad computacional de O(n²). Algunos de los métodos más usados son:
Para los problemas de la forma Ax = b, donde A es una
matriz de Toeplitz simétrica, se puede utilizar la recursión de Levinson o alguno de los métodos derivados de éste. Un método derivado de la recursión de Levinson es la recursión de Schur, que es ampliamente usado en el campo del procesamiento digital de señales.
Para los problemas de la forma Ax = b, donde A es una
matriz singular o casi singular, la matriz A se descompone en el producto de tres matrices en un proceso llamado descomposición de valores singulares.
[editar] Solución de sistemas lineales en un anillo
Artículo principal:
ecuación diofántica
Los métodos para resolver el sistema (1) sobre un anillo son muy diferentes a los considerados anteriormente. De hecho la mayoría de métodos usados en cuerpos, como la regla de Cramer, son inaplicables en anillos debido a que no existen inversos multiplicativos.
La existencia de solución del sistema (
1) sobre los enteros requiere varias condiciones:
Para cada i es divisor de .
Si la condición anterior se cumple para un determinado i existe un conunto de enteros formado por el conjunto de enteros que satisface la i-ésima ecuación, y existirá solución si la intersección .






domingo, 22 de marzo de 2009

Karl Friedrich Gauss


Karl Friedrich Gauss
(Brunswick, actual Alemania, 1777 - Gotinga, id., 1855) Matemático, físico y astrónomo alemán. Nacido en el seno de una familia humilde, desde muy temprana edad Karl Friedrich Gauss dio muestras de una prodigiosa capacidad para las matemáticas (según la leyenda, a los tres años interrumpió a su padre cuando estaba ocupado en la contabilidad de su negocio para indicarle un error de cálculo), hasta el punto de ser recomendado al duque de Brunswick por sus profesores de la escuela primaria
.

BIBLIOGRAFIA DE GRABIEL CRAMER

Gabriel Cramer
(Ginebra, Suiza, 1704-Bagnols-sur-Cèze, Francia, 1752) Matemático suizo. Fue catedrático de matemáticas (1724-1727) y de filosofía (1750-1752) en la Universidad de Ginebra. En 1750 expuso en Introducción al análisis de las curvas algebraicas la teoría newtoniana referente a las curvas algebraicas, clasificándolas según el grado de la ecuación. Reintrodujo el determinante, algoritmo que Leibniz ya había utilizado al final del siglo XVII para resolver sistemas de ecuaciones lineales con varias incógnitas. Editó las obras de Jakob Bernoulli y parte de la correspondencia de Leibniz.

METODO DE CRAMER



Gabriel Cramer (31 de julio, 1704 - 4 de enero, 1752) fue un matemático Suizo nacido en Ginebra.
Profesor de matemáticas de la Universidad de Ginebra durante el periodo 1724-27. En 1750 ocupó la cátedra de filosofía en dicha universidad. En 1731 presentó ante la Academia de las Ciencias de París, una memoria sobre las múltiples causas de la inclinación de las órbitas de los planetas. Editó las obras de
Jean Bernouilli (1742) y Jacques Bernouilli (1744) y el Comercium epistolarum de Leibniz. Su obra fundamental fue la Introduction à l’analyse des courbes algébriques (1750), en la que se desarrolla la teoría de las curvas algebraicas según los principios newtonianos, demostrando que una curva de grado n viene dada por N puntos situados sobre ella.
La regla de Cramer es un teorema en álgebra lineal, que da la solución de un sistema lineal de ecuaciones en términos de determinantes. Recibe este nombre en honor a Gabriel Cramer (1704 - 1752), quien publicó la regla en su Introduction à l'analyse des lignes courbes algébriques de 1750, aunque Colin Maclaurin también publicó el método en su Treatise of Geometry de 1748 (y probablemente sabía del método desde 1729).[1]
La regla de Cramer es de importancia teórica porque da una expresión explícita para la solución del sistema.
Computacionalmente, es ineficiente para grandes matrices y por ello no es usado en aplicaciones prácticas que pueden implicar muchas ecuaciones. Sin embargo, como no es necesario pivotar matrices, es más eficiente que la
eliminación gaussiana para las matrices pequeñas, particularmente cuando son usadas operaciones SIMD.